

# DES Sky Camera (Cloud Camera)

DARK ENERGY SURVEY

Douglas L. Tucker (FNAL)

Cloud Camera Review 3 January 2008



### SkyCam Purpose

DARK ENERGY SURVEY

### An All-Sky Camera is needed in order to:

- Provide real-time estimates of the sky conditions for survey strategy
  - E.g.: "Should the next target be a photometric calibration field, a science target, or something else?"
- Provide a measure of the photometric quality of an image
  - E.g.: "This image was obtained under such-and-such conditions; is it good enough to be used for photometric calibrations?"
- Detect even light cirrus for the above purposes under a full range of moon phases (no moon to full moon)



### SkyCam Functional Overview

DARK ENERGY SURVEY

### The Sky Camera system should\*:

- 1. Image the full sky at a wavelength of ~10 microns once every 30 seconds throughout the course of nightly operations of the Blanco 4.0m telescope.
- 2. Process the images in real-time.
- 3. Output in real-time a GIF version of the processed image to a webpage.
- 4. Output in real-time a quantitative diagnostic indicating the cloudiness of the sky (e.g., the rms of the pixel values from the most recent processed image) to a web-accessible graph and to an archival database.
- 5. Create and animation based upon the processed images from the past hour to detect cloud movement, and output this animation to a webpage.
- 6. Create an animation based upon the full night's processed images at the end of each night.
- 7. Archive the raw and processed FITS images, processed GIF files, and the full-night animation to a web-accessible directory.

<sup>\*</sup>Based upon the functionality of the APO 10 micron all-sky camera, which, in its current incarnation has been operating successfully since 2001.



# APO 10 micron All-Sky Camera Output

DARK ENERGY SURVEY











### Proposed SkyCam DB Inputs

DARK ENERGY SURVEY

### SkyCam table in DB:

- Date & Time Stamp (UT/TAI)
- mean sky brightness
- std dev of sky brightness
- "photometricity" flag (0/1)
   (or threshold value of the std dev of sky brightness considered photometric)
- name of associated SkyCam FITS images (raw and processed)





# APO 10 micron All-Sky Camera Hardware

DARK ENERGY: SURVEY



Design of the current APO 10 micron all-sky camera, commissioned in 2001



A photograph of the APO 10 micron all-sky camera



# SkyCam Disk Space Needs (Assuming APO Design)

DARK ENERGY SURVEY

- Image size: 320 pixels x 240 pixels
  - 16-bit FITS images
  - 150KB per FITS image
- 1 FITS image every 30 seconds
  - 12 hours per night operation
  - 1440 FITS images per night
  - 1440 FITS images/night x 150KB / FITS image = 211MB / night
- Saving all images in GIF and animated GIF format as well as FITS format could conceivably triple the diskspace requirements
- Ancillary files (like nightly QA plots and logs) may only add an additional 1
   MB per night or so to the archive
- 3 x 211MB / night ~ 630 MB / night
- Annual storage requirements ~ 630 MB /night x 365 nights ~ 225 GB



# APO Design Cost Estimate\*

(29 December 2007)

DARK ENERGY
SURVEY

| Raytheon "Thermal Eye" 300D 10-micron camera                                            | \$8,000     |
|-----------------------------------------------------------------------------------------|-------------|
| Video-to-optical fiber converters (E.g., Opticomm MMV-110 Mini XMT, RCV pair)           | 2x\$275     |
| (E.g., Opticomin wiwv-110 willi xivi1, RCV pail)                                        |             |
| Frame grabber (E.g., Hauppauge WinTV 191)                                               | \$100       |
| Pentium Desktop with 1-GB RAM and 250 GB HD                                             | \$3,000     |
| External 250 GB HD (backup)                                                             | \$250       |
| 18-inch-diameter hyperbolic mirror (machined aluminum)                                  | \$3000      |
| Camera support structure and enclosure (Base plate, canopy, mount plate/strut assembly) | \$2000      |
| Paint assembly titanium white epoxy                                                     | \$400       |
| Polish the aluminum mirror                                                              | 1 FTE Day   |
| TOTAL                                                                                   | \$17,300    |
|                                                                                         | + 1 FTE Day |

<sup>\*</sup>Based upon information from the APO IRSC documentation page, <a href="http://irsc.apo.nmsu.edu/irsc\_doc/">http://irsc.apo.nmsu.edu/irsc\_doc/</a>, and from e-discussions with Mike Carr.



# SkyCam Timeline

DARK ENERGY SURVEY

| Finalize design and start obtaining quotes for materials | Mar 1, 2008 |
|----------------------------------------------------------|-------------|
| Start constructing SkyCam and writing SkyCam software    | Sep 1, 2008 |
| Start commissioning SkyCam and SkyCam software           | Mar 1, 2009 |
| Complete commissioning SkyCam and SkyCam software        | Sep 1, 2009 |
| Start DES                                                | Sep 1, 2010 |



DARK ENERGY
SURVEY

# And that is how matters stood until October 2007...

# LSST Cloud Camera Design IR All-Sky Camera

Visible Camera IR Camera under dome under hatch

IR camera with 180deg cone angle lens



Black Body located inside hatch

- Deployment in Chile around mid 2007
- Comparison of IR images with SASCA images

# LSST Cloud Camera Design mid-IR Sky Transmission





### LSST Cloud Camera Design

### Kitt Peak Run

Mean and RMS over a window ~100x100 pixels centered on each filter4 image



## LSST Design Cost Estimate

- Estimate provided by Jacques Sebag (NOAO):
  - System was purchased for \$60K, which includes the unit itself, the software, and the computer.
  - The price may have changed slightly along with small changes in the company's design of the system.





### APO vs. LSST Designs

DARK ENERGY SURVEY

### APO Design

#### Pros:

- Robust
  - in use at APO for several years
- Inexpensive
  - APO designs and software freely available
  - Materials cost < \$20K</li>

### Cons:

- 1st generation 10-micron all-sky camera
  - probably outdated by 2010
  - APO itself may have upgraded by then
- One of a kind camera at CTIO
  - less maintainability
  - less redundancy
  - semi-customized (not purely "off-the-shelf"
- Not flux calibrated

### LSST Design

#### Pros:

- High level of maintainability
  - duplicate of camera to be sited on Cerro Pachon for SOAR and LSST
- Partial redundancy
  - Although not ideal, if one of the two cameras fails, one can use the outputs from the camera on the other mountain as a temporary "stop-gap" solution
- Several filters + optical all-sky camera
   → more sky diagnostics
- "Blackbody on Board" → flux calibration
- More-or-less "off-the-shelf"

#### Cons:

- More expensive (~\$60K)
  - Cost sharing with CTIO can mitigate the expense to DECam.
- Sky diagnostics still under development
- So far, limited use under field conditions